Lecture 22

Charles Favre

Math-601D-201: Lecture 22. Geometry of pseudo-convex domains

Charles Favre charles.favre@polytechnique.edu

March 31st, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○の≪⊙

Lecture 22

Charles Favre

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

 $\Omega \subset \mathbb{C}^n$ connected open set.

Theorem

 $\Omega \subset \mathbb{C}^n$. The following are equivalent.

Ω is pseudo-convex;

•
$$H^{p,q}(\Omega) = 0$$
 for all $q > 0$;

Extension of holomorphic functions

Charles Favre

 $\Omega \subset \mathbb{C}^n$

Theorem

Suppose that $H^{0,1}(\Omega) = 0$, and pick $h \in \mathcal{O}(\Omega)$ such that $dh|_{\{h=0\}} \neq 0$. Write $M = \{h = 0\}$. Then the restriction morphism

$$\mathcal{O}(\Omega)
ightarrow \mathcal{O}(M)$$

is surjective.

・ロト・日本・モート ヨー うくぐ

Lecture 22 Charles Favre

Extension of holomorphic functions (complement)

 \rightarrow using L²-technics, one can prove a far-reaching generalization of the previous result, see https://arxiv.org/1407.4946.

Theorem (Ohsawa-Takegoshi's theorem)

 $u \in PSH(\Omega)$. $\exists C = C(\Omega)$ such that for any $f \in \mathcal{O}(M) \cap L^2(e^{-u})$, there exists $F \in \mathcal{O}(\Omega) \cap L^2(e^{-u})$ such that $F|_M = f$ and

$$\int |F|^2 e^{-u} \le C \int |f|^2 e^{-u}$$

・ロト・日本・日本・日本・日本・日本

Topology of pseudo-convex domains

 $\Omega \subset \mathbb{C}^n$ pseudo-convex.

Theorem

 $H^{q}(\Omega, \mathbb{C}) \equiv \{\partial - \textit{closed hol. } q \textit{ forms}\} / \partial \{\textit{hol. } q-1 \textit{ forms}\}$

In particular

$$H^q(\Omega, \mathbb{C}) = 0$$
 for all $q > n$

 $\longrightarrow H^n(\Omega, \mathbb{C}) = 0$ for any domain

 $\longrightarrow \Omega$ pseudo-convex has the homotopy type of a CW-complex of dimension *n*

Lecture 22

Charles Favre

Definition (Stein manifold)

A complex manifold M of dimension n is Stein iff

1. holomorphically convex

$$\hat{\mathcal{K}} = \{ z \in \mathcal{M}, |f(z)| \leq \sup_{\mathcal{K}} |f|, \forall f \in \mathcal{O}(\mathcal{M}) \}$$

is compact for all compact K.

- 2. holomorphic functions separate points: for all $z_1 \neq z_2$, there exists $f \in \mathcal{O}(M)$ s.t. $f(z_1) \neq f(z_2)$
- 3. for any $z \in M$, there exists $f_1, \dots, f_n \in \mathcal{O}(M)$ such that $f = (f_1, \dots, f_n)$ is a local diffeomorphism at z.

Charles Favre

Lecture 22

Charles Favre

Theorem

M is Stein iff $H^q(M, \mathcal{F}) = 0$ for all coherent sheaf \mathcal{F} and for all q > 0.

Theorem

M is Stein iff there exists a proper analytic embedding $M \hookrightarrow \mathbb{C}^N$

 \rightsquigarrow Stein manifolds play the role of affine varieties in analytic geometry.

・ロト・西ト・山田・山田・山下